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Natural products continue to be an invaluable resource of anticancer drug discovery in recent years. Propolis is known for its
biological activities such as antimicrobial and antitumor effects. This study assessed the effects of Brazilian red propolis (BRP) on
apoptosis andmigration potential in human bladder cancer cells.The effect of BRP ethanolic extract (25, 50, and 100 𝜇g/mL) on 5637
cells was determined by MTT, LIVE/DEAD, and migration (scratch assay) assays. Apoptosis induction was investigated through
flow cytometry and gene expression profile was investigated by qRT-PCR. Results showed cytotoxicity on MTT and LIVE/DEAD
assays, with IC

50
values of 95 𝜇g/mL in 24 h of treatment. Cellular migration of 5637 cells was significantly inhibited through

lower doses of BRP ethanolic extract (25 and 50𝜇g/mL). Flow cytometry analyses showed that BRP induced cytotoxicity through
apoptosis-like mechanisms in 5637 cells and qRT-PCR revealed increased levels of Bax/Bcl-2 ratio, p53, AIF, and antioxidant
enzymes genes. Data suggest that BRP may be a potential source of drugs to bladder cancer treatment.

1. Introduction

Cancer is one of the leading causes of death in both develop-
ing and developed countries and is a worldwide concern. A
total of 1,660,290 new cancer cases and 580,350 cancer deaths
are projected to occur in the United States in 2013 [1] and
by 2050, 27 million new cancer cases and 17.5 million cancer
deaths are projected to occur in the world [2]. An analysis
of the anticancer drugs revealed that 47.1% of the approved
anticancer drugs were either unmodified natural products
or their semisynthetic derivatives or synthesized molecules
based on natural product compound pharmacophores [3].

Natural products tend to present more structurally diverse
“drug-like” and “biologically friendly” molecular qualities
than pure synthetic compounds at random [4] and have
been considered as an “unlimited” resource for future drug
discovery [5].

Propolis is a resinous mixture of substances collected
by honey bees (Apis mellifera) from various plant sources.
It has been used in folk medicine for centuries mostly
due to its antimicrobial and anti-inflammatory activities
[6]. Notable chemical differences are often found between
propolis samples and Brazil has the widest chemical diversity
of propolis types [7]. Brazilian red propolis (BRP) is the
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newest variety of Brazilian propolis and is a promising source
of new bioactive compounds [8] like chalcones, pterocarpans,
isoflavonoids, and polyphenols [9].

Since its discovery, BRP has been studied to elucidate its
several biological properties. Studies have shown antitumor
properties of red propolis against several types of cancer both
in vitro and in vivo [8, 10–14]. The mechanisms involved
on potential anticancer effects of propolis are suppressing
cancer/precancerous cells proliferation via its immunomod-
ulatory effect; decreasing the cancer stem cell populations;
blocking specific oncogene signaling pathways; modulating
the tumormicroenvironment; and, lastly, being an adjunct or
complementary treatment to existing mainstream anticancer
therapies [15]. Besides that, BRP had also shown a potent
antiangiogenic activity by targeting key steps that are required
for new blood vessel development [16, 17], showing a natural
chemopreventive activity.

The aim of this study was to investigate whether Brazilian
red propolis ethanolic extracts have cytotoxic effect and study
the underlying cell death mechanisms in human bladder
cancer cells.

2. Materials and Methods

2.1. Red Propolis Sample and Extract Preparation. The red
propolis was collected from a geographic region on northeast
of Brazil known as Brejo Grande (S 10∘2825 and W
36∘2612). The samples of red propolis were collected in
September 2011 and frozen at −20∘C. For extract preparation,
1 g (dry weight) of raw red propolis was mixed with 10mL
of EtOH-H

2
O 70% (v/v) and shaken at room temperature

for 24 h. After extraction, the mixture was filtered and the
solvent was evaporated and produced a red fine powder. This
dry extract was kept frozen at −20∘C. The BRP final concen-
trations (25, 50, and 100 𝜇g/mL) were prepared immediately
before use with EtOH-H

2
O 50% (v/v).

2.2. Chemical Characterization of Red Propolis Extract (Mass
Analysis). The dries extracts were dissolved in a solution of
50% (v/v) chromatographic grade acetonitrile (Tedia, Fair-
field, OH, USA), 50% (v/v) deionized water, and 0.1% formic
acid.The solutions were infused directly individually into the
ESI source by means of a syringe pump (Harvard Apparatus)
at a flow rate of 50 𝜇L min−1. ESI(+)-MS and tandem ESI(+)-
MS/MS were acquired using a hybrid high-resolution and
high accuracy (5 𝜇g/L)microTof (Q-TOF)mass spectrometer
(Bruker Scientific) under the following conditions: capillary
and cone voltages were set to +3500V and+40V, respectively,
with a desolvation temperature of 100∘C. For ESI(+)-MS/MS,
the energy for the collision induced dissociations (CID) was
optimized for each component. Diagnostic ions in different
fractions were identified by the comparison of their ESI(+)-
MS/MS dissociation patterns with compounds identified
in previous studies. For data acquisition and processing,
compass software (Bruker Scientific) was used.The data were
collected in them/z range of 70–800 at the speed of two scans
per second, providing the resolution of 50,000 (FWHM) at
m/z 200. No important ions were observed belowm/z 180 or

abovem/z 650; therefore ESI(+)-MS data is shown in them/z
180−650 range.

2.3. Cell Culture. The human bladder carcinoma cell line
(5637) was obtained from the Rio de Janeiro Cell Bank
(PABCAM, Federal University of Rio de Janeiro, RJ, Brazil)
and cultured as a monolayer in Dulbecco’s modified Eagle’s
medium (DMEM) (Vitrocell Embriolife, Campinas, Brazil),
supplemented with 10% fetal bovine serum (FBS) (Gibco,
Grand Island, NY, USA), 1% L-glutamine, and 1% peni-
cillin/streptomycin. Cells were grown at 37∘C in an atmo-
sphere of 95% humidified air and 5% CO

2
.

2.4. Antiproliferative Assay. The proliferation of the 5637-
cell line after treatment was determined by measuring the
reduction of soluble MTT to water insoluble formazan. Cells
were seeded at a density of 2 × 104 cell per well in a
volume of 100 𝜇L in 96-well plates and grown at 37∘C in a
5% CO

2
atmosphere for 24 h before being used in the cell

viability assay. Cells were then treated with the red propolis
extract EtOH-H

2
O 50% (v/v) at concentrations of 25, 50,

and 100 𝜇g/mL or EtOH-H
2
O 50% vehicle alone, for 24 h.

Following incubation, 20 𝜇L of MTT was added to each well,
and the cells were incubated for an additional 3 hours at
37∘C. Differences in total cellular metabolism were detected
at a wavelength of 492 nm using a microplater reader. The
inhibition (%) of cell proliferation was determined as follows:
inhibitory growth = (1−Abs492treated cells/Abs492control cells)×
100% [18]. The IC

50
(concentration 𝜇g/mL that inhibits 50%

of cell growth) was also calculated using GraphPad Prism 5.0
Software.Thenormal CHO-K1 cell linewas used as selectivity
control in this test. All observations were validated by at
least three independent experiments in triplicate for each
experiment.

2.5. LIVE/DEAD Assay. Cells were treated with red propolis
extract EtOH-H

2
O 50% (v/v) at concentrations 25, 50, and

100 𝜇g/mL for 24 h as described above. LIVE/DEAD cell via-
bility assay (Invitrogen, Carlsbad, CA, USA) was conducted
following themanufacturer’s instructions. Live cells were able
to take up calcein and could be analyzed by green fluorescent
light emission (488 nm). Ethidium bromide homodimer
diffuses through the now permeable membrane of dead cells
and binds to DNA, which was detected by the red fluorescent
signal (546 nm). The LIVE/DEAD assay was analyzed with
a fluorescence microscope Olympus IX71 (Olympus Optical
Co., Tokyo, Japan) by multicolour imaging. After excitation
at 480 nm and emission at 510 nm the fluorescent images
were stored as TIFF files using a digital camera attached to
a fluorescence microscope (DP 12; BX 51; Olympus, Tokyo,
Japan). The recorded images were analyzed using Cell∧F
software (Cell-F, New York, USA). The data were expressed
as the mean ± SEM and the experiment was run in triplicate.

2.6. Apoptosis Assays. Apoptosis was determined by flow
cytometry using Annexin V-7AAD apoptosis detection kit
(Guava Technologies, Millipore Corporation) and TUNEL
detection kit (Guava Technologies, Millipore Corporation),
following the manufacturer’s instructions. 5637 cells were
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exposed to red propolis extract EtOH-H
2
O 50% (v/v) at

concentrations of 25, 50, and 100𝜇g/mL for 24 h in culture
media at 37∘C with 5% CO

2
. A range of 2.0 × 104 to

1.0 × 105 treated cells (100 𝜇L) were added to 100 𝜇L of
Guava Nexin reagent. Cells were incubated in the dark at
room temperature for 20min and samples were acquired
on the flow cytometry (Guava Flow Cytometry easyCyte
System; Millipore Corporation). In this assay, an Annexin V-
negative and 7-AAD-positive result indicated nuclear debris;
an Annexin V-positive and 7-AAD-positive result indicated
late apoptotic/death cells, while anAnnexinV-negative and 7-
AAD-negative result indicated live healthy cells and Annexin
V-positive and 7-AAD-negative result indicated the presence
of early apoptotic cells. The results were reported as the
percentage of cells in each apoptotic phase (early and late) and
the normal CHO-K1 cell line was used as selectivity control
in this test.

For TUNEL assay 5637 cells were subjected to cells
fixation procedure with 50𝜇L of 4% (w/v) paraformaldehyde
in PBS for 60min at 4∘C and thenwith 200𝜇L of ice-cold 70%
(v/v) ethanol at−20∘C for at least 18 h. For staining procedure,
1.5 × 104 to 1.0 × 105 of fixed cells was washed twice and was
added to 25 𝜇L of DNA Labeling Mix for 60 minutes at 37∘C.
At the end of the incubation time, cells were centrifuged and
suspended in 50 𝜇Lof theAnti-BrdUStainingMix. Cells were
incubated in the dark at room temperature for 30min and
samples were acquired on the flow cytometry (Guava Flow
Cytometry easyCyte System; Millipore Corporation). In this
assay, terminal deoxynucleotidyl transferase (TdT) catalyzes
the incorporation of BrdU residues into the fragmenting
nuclear DNA of apoptotic cells at the 3-hydroxyl ends by
nicked-end labeling. TRITC-conjugated anti-BrdU antibody
binds to the incorporated BrdU residues, labeling the mid- to
late-stage apoptotic cells.

2.7. Quantitative Real-Time PCR (qRT-PCR). The gene
expression profiles of apoptotic and oxidative stress-related
genes were investigated by qRT-PCR. Cells were added to
6-well flat bottom plates at a density of 2 × 105 per well and
grown at 37∘C in a humidified atmosphere of 5% CO

2
, 95%

air for 24 h. The cells were then treated with the red propolis
extract EtOH-H

2
O 50% (v/v) at concentrations of 25, 50, and

100 𝜇g/mL for 24 h. Total RNA extraction, cDNA synthesis,
and qRT-PCR were conducted as previously described [19].
Briefly, RNA samples were isolated using TRIzol reagent
(Invitrogen, USA) and samples were DNase-treated with a
DNA-free kit (Ambion, USA) following the manufacturer’s
protocol. First-strand cDNA synthesis was performed with
700 ng of RNA using the High Capacity cDNA Reverse
Transcription Kit (Applied Biosystems, UK) according to the
manufacturer’s protocol. Real-time PCR reactions were run
on a Stratagene Mx3005P Real-Time PCR System (Agilent
Technologies, USA) using SYBR Green PCR Master Mix
(Applied Biosystems, UK) and the primers described in
Table 1.

2.8. Migration Assay. The ability of cells to migrate in
monolayer cultures was assessed by a scratch-wound assay
[20]. Confluent 5637-cell cultures in 6-well flat bottom plates

Table 1: Primers used for qRT-PCR in this study.

Gene Sequence 5-3

p53 For AGCGAGCACTGCCCAACA
p53 Rev CACGCCCACGGATCTGAA
Caspase-9 For CCAGAGATTCGCAAACCAGAGG
Caspase-9 Rev GAGCACCGACATCACCAAATCC
Bcl-2 For GTGTGGAGAGCGTCAACC
Bcl-2 Rev CTTCAGAGACAGCCAGGAG
Endo G For GTACCAGGTCATCGGCAAGAA
Endo G Rev CGTAGGTGCGGAGCTCAATT
Bax For ATGCGTCCACCAAGAAGC
Bax Rev ACGGCGGCAATCATCCTC
Caspase-3 For CAGTGGAGGCCGACTTCTTG
Caspase-3 Rev TGGCACAAAGCGACTGGAT
Caspase-8 For GGATGGCCACTGTGAATAACTG
Caspase-8 Rev TCGAGGACATCGCTCTCTCA
GAPDH For GGATTTGGTCGTATTGGG
AIF For GGGAGGACTACGGCAAAGGT
AIF Rev CTTCCTTGCTATTGGCATTCG
CuZn-SOD For AGGGCATCATCAATTTCGAG
Cuzn-SOD Rev TGCCTCTCTTCATCCTTTGG
Mn-SOD For GGAAGCCATCAAACGTGACT
Mn-SOD Rev CTGATTTGGACAAGCAGCAA
CAT For TTTCCCAGGAAGATCCTGAC
CAT Rev ACCTTGGTGAGATCGAATGG
GLUT For TTCCCGTGCAACCAGTTTG
GLUT Rev TTCACCTCGCACTTCTCGAA
GST For CCCGATGTATCACGCAGTTA
GST Rev TTCACTGCAACAGCAAAACC
TRX For CTTGTGGCCTTTCTGAGGAG
TRX Rev CTCTTGACGGAATCGTCCAT
GAPDH Rev TCGCTCCTGGAAGATGG

were scraped with a p200 pipet tip to create a wide cell-free
zone with a straight wound edge. Cells were grown in media
with 25 and 50 𝜇g/mL of red propolis EtOH-H

2
O extract for

24 h. The edge of the wound was marked at the bottom of
the plate with a fine gauge hypodermic needle as a migration
reference point. The distance and quantity of cell migration
into the cell-free zone were evaluated on a digital camera
attached to an inverted microscope for 12 h (DP 12; BX 51;
Olympus, Tokyo, Japan). The recorded images were analysed
usingCell∧F software (Cell-F, NewYork, USA).The data were
expressed as the mean ± SEM and the experiment was run in
triplicate.

2.9. Data Analysis. Data sets were analyzed using one-way
or two-way ANOVA followed by a Tukey test for multiple
comparisons, except for Bax/Bcl-2 ratio that was analyzed
using Student 𝑡-test. Significance was considered at 𝑃 < 0.05
in all analyses. Data were expressed as mean ± SEM.

3. Results
3.1. Chemical Characterization of Red Propolis Extract (Mass
Analysis). Due to environmental conditions, the chemical
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Figure 1: ESI(+)-MS fingerprint of red propolis ethanolic extract.

composition of propolis extracts may differ. As reported
in a previous work, high-resolution direct-infusion mass
spectrometry (HR-DIMS) was used for chemical character-
ization of the red propolis extract [14].Themain components
were maintained as follows: m/z 257.0764 (liquiritigenin);
269.0769 (formononetin); 271.0921 (medicarpin); 285.0718
(biochanin A); 523.1641 (retusapurpurin B) (Figure 1). Exact
mass, fragmentation pathway, and isotopic ratiowere used for
confirmation.

3.2. Red Propolis Inhibited Cell Proliferation and Increased
5637-Cell Death. The result showed that red propolis extract
significantly decreased 5637-cell viability in vitro in a dose-
dependent manner (Figure 2(a)). The cell growth inhibi-
tion following red propolis treatment was over 50% from
100 𝜇g/mL in 24 hours. EtOH-H

2
O vehicle alone showed

no cytotoxicity or antiproliferative activity at 24 h of treat-
ment. The in vitro cytotoxic activity of red propolis extract
showed an IC

50
value of 95 𝜇g/mL in 24 h of treatment.

BRP treatment also inhibited proliferation in CHO-K1 cell
line at 24 h of treatment, displaying no selectivity between
normal and cancer cells in terms of in vitro growth inhibition
(Figure 2(a)).

LIVE/DEAD assay showed an increase in cell death
(red fluorescence) after red propolis treatments compared
to the control group (Figure 2(b)). Additionally, a reduction
in cell number can clearly be observed at concentrations
of 100 𝜇g/mL (Figure 2(b)(D)). EtOH-H

2
O vehicle alone

treatment promoted cell death similar to that observed in the
control group (data not shown).

3.3. Red Propolis Induced Apoptosis on 5637 Cells. The results
indicated that red propolis is capable of inducing early

apoptosis at concentrations of 50 and 100 𝜇g/mL (55.8% and
63.9%, resp.) when compared to the control group (𝑃 <
0.05) (Figure 3); however no apoptosis difference is observed
between these two concentrations (𝑃 > 0.05). The concen-
tration of 25𝜇g/mL was not effective (𝑃 > 0.05) in inducing
early apoptosis, presenting levels of apoptosis similar to
untreated control cells (29.9 and 6.7%, resp.).The red propolis
extract induced a higher percentage of late apoptosis/dead
at 100 𝜇g/mL concentration (31.1%) compared to the control
(𝑃 < 0.05). At the 25 and 50 𝜇g/mL concentrations the
percentage of late apoptotic/dead cells was 5.1% and 14.6%,
respectively, similar to that observed in the untreated control
group (𝑃 > 0.05). Exposure of the 5637 cells to EtOH-
H
2
O vehicle alone had no effect in apoptosis induction (data

not shown). BRP treatment was not able to induce apoptosis
in CHO-K1 cell line at 25 and 50 𝜇g/mL. The percentage
of apoptotic cells was 11% and 15.4% for 25 and 50 𝜇g/mL,
respectively, which is not different from untreated control
group (𝑃 > 0.05) (data not shown). Early and late apoptotic
levels together at 100 𝜇g/mL were 47% in CHO-K1 cells.
Interestingly, 51% of CHO-K1 normal cells remained alive
after 100𝜇g/mL BRP treatment but only 8% of 5637 tumoral
cells remained alive after the same treatment. This result
may indicate that BRP displays selectivity between normal
and cancer cells in terms of in vitro apoptosis induction
(Figure 3(b)).

TUNEL staining assay was performed to better elucidate
the mid- to late-stage apoptosis of 5637 cells induced by
red propolis, once that 7AAD staining does not differentiate
between late-stage apoptoses from another cell death types.
Figure 4 demonstrates that red propolis presented a tendency
to increase late apoptosis inducement; however no differences
(𝑃 > 0.05) on late apoptosis rates were observed between
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treatment (B); 50𝜇g/mL treatment (C); 100𝜇g/mL treatment (D).

control group and red propolis treatment at 25, 50, and
100 𝜇g/mL in bladder cancer cells (Figure 4(b)).

3.4. Red Propolis Changes Apoptotic Gene Expression Profile
on 5637 Cells. Theexpression levels of pro- and antiapoptotic
genes (Bax, Bcl-2, AIF, EndoG, caspase-3, caspase-8, caspase-
9, and p53) in 5637 cells were evaluated by qRT-PCR. As
shown in Figure 4, the expression of Bax was bell-shaped,
with 25 𝜇g/mL treatment showing the higher fold induction
(Figure 5(a)). However, Bcl-2 in 5637 cells was also increased
after 25 and 50 𝜇g/mL treatments when compared to the
control (𝑃 < 0.05), showing 1.5- and 2-fold increase inmRNA
expression, respectively (Figure 5(b)). Interestingly, no effect
in mRNA expression levels was observed after 100𝜇g/mL
treatment in 5637 cells when compared to the control (𝑃 >
0.05), showing that red propolis extractmay trigger a negative
feedback.However, the Bax/Bcl-2 ratio increased in 5637 cells
after 100𝜇g/mL BRP treatment (Figure 5(c)), compared to
that observed in untreated cells and 25 and 50 𝜇g/mL treated
cells (𝑃 < 0.05).

Apoptosis-inducing factor (AIF) mRNA expression was
found to be significantly upregulated in 25 and 50𝜇g/mL red
propolis treated cells (𝑃 < 0.05) compared to no treated
control cells and to 100 𝜇g/mL treated cells (Figure 6(a)).
No differences were observed between the controls 25 and
50𝜇g/mL of red propolis treatments in Endo G gene expres-
sion (Figure 6(b)). However, both Endo G and AIF mRNA
levels were significantly lower (𝑃 < 0.05) in the 100 𝜇g/mL
treatment compared to the control.

Red propolis also induced changes in the mRNA levels
of caspase-9, caspase-8, caspase-3, and p53 in 5637 cells
(Figure 7). Initiator caspase-9 and p53 gene were significantly

upregulated (𝑃 < 0.05) by 50𝜇g/mL treatment com-
pared to control cells and other concentrations treatments
(Figures 7(a) and 7(b)). Additionally, caspase-3, caspase-8,
and caspase-9 were downregulated by 100 𝜇g/mL treatment
compared to no treated and to 25 and 50𝜇g/mL treated cells
(𝑃 < 0.05) (Figures 7(b)–7(d)).

3.5. Red Propolis Increased Gene Expression of Antioxidant
Enzymes. The gene expression profiles of the following
enzymes were investigated in this study as follows: cata-
lase (CAT), Cu/Zn superoxide dismutase (Cu/Zn-SOD),
manganese superoxide dismutase (Mn-SOD), glutathione-
S-transferase (GST), and thioredoxin reductase-1 (TRX).
Red propolis showed a tendency to increased CAT, Cu/Zn-
SOD, and Mn-SOD mRNA levels significantly (𝑃 < 0.05)
in cells exposed to 50 and 100𝜇g/mL compared to the
controls (Figures 8(a), 8(d), and 8(e)); however there was
no difference in CAT mRNA expression between 50 and
100 𝜇g/mL treatments (Figure 8(d)). No difference between
the control and 25 𝜇g/mL treatment was observed for these
genes expression levels. Moreover, the GST, TRX, and GLUT
mRNA expression patterns were investigated and no dif-
ferences between treated and untreated cells were observed
(Figures 8(b), 8(c), and 8(f)), but treated cells presented a
dose-dependent tendency to increased expression levels in
TRX and GST genes.

3.6. Red Propolis Inhibits Migration of Urothelial Carcinoma.
Migration of 5637 cells was significantly inhibited by 24 h
of red propolis treatment. As shown in Figure 9, cellular
migration was controlled in time-dependent by red propolis
ethanolic extract. The width of the scratch-wound healing
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100𝜇g/mL for 24 h.Data are expressed asmeans± SEM from three independent experiments.Different letters (A, B, andC) indicate significant
differences between the means and differences were considered significant at 𝑃 < 0.05. (∗) Early and late apoptosis together.
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Figure 4: BRP ethanolic extract increased DNA fragmentation in 5637 cells. (a) Flow cytometry graphs for TUNEL analysis of cells treated
with 25, 50, 100, and 200 𝜇g/mL of BRP ethanolic extract for 24 h. Control group (A), 25 𝜇g/mL group (B), 50𝜇g/mL group (C), and 100 𝜇g/mL
group (D). (b) Percentage of cells with DNA fragmentation after treatment with 25, 50, and 100𝜇g/mL of BRP ethanolic extract for 24 h. Data
are expressed as means ± SEM from three independent experiments. Different letters (A and B) indicate significant differences between the
means and differences were considered significant at 𝑃 < 0.05.

was inhibited by up to 20% and 30% at 8 and 24 h of incu-
bation, respectively, in both concentrations of red propolis
tested (Figures 9(a) and 9(b)). The number of cell migration
to the scratch-wound healing was also smaller when cells
were treated with BRP compared to those who were not
treated (Figures 9(a) and 9(c)). Furthermore, inhibition of
5637 migrations occurred at lower concentrations (25 and
50𝜇g/mL) than the aforementioned IC

50
concentrations by

MTT assay.

4. Discussion

Natural products continue to be an invaluable resource
of anticancer drug discovery [5]. The prospect of using
natural products to create more selective and effective cancer
treatment is a reality and propolis and its compounds possess
strong antitumor potential [15, 21]. In the present study we
evaluated for the first time the effect of Brazilian red propolis
ethanolic extract on bladder cancer cellular model. Our in
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Figure 5: BRP ethanolic extract increased the Bax/Bcl-2 ratio in 5637-cell line after 24 hours of treatment. The gene expression profile was
determined by qRT-PCR and data were normalized using GAPDH levels. (a) Proapoptotic Bax gene expression. (b) Antiapoptotic Bcl-2 gene
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Figure 6: Effect of BRP ethanolic extract in apoptotic-related gene expression of 5637-cell line. (a) AIF; (b) Endo G. Data are expressed as
means ± SEM from three independent experiments. Different letters (A, B, and C) indicate significant differences between the means and
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Figure 7: BRP ethanolic extract induced changes in the mRNA levels in 5637 cells. 5637 cells were treated with the indicated concentrations
of BRP ethanol extract for 24 h. RT-PCR were performed to caspase-9, caspase-8, caspase-3, and p53 genes and data were normalized using
GAPDH levels. Different letters (A, B, and C) indicate significant differences between the means and differences were considered significant
at 𝑃 < 0.05.

vitro data demonstrated that red propolis treatment above
50𝜇g/mL resulted in morphological changes, significant
antiproliferative effect, and cytotoxic effect in bladder cancer
cell line. Interestingly, our results have also shown that lower
concentrations of red propolis treatment (25 and 50 𝜇g/mL)
are able to significantly decrease bladder cancer cells migra-
tion in vitro. These data indicate a strong effectiveness of the
BRP extract against bladder cancer cell line.

Apoptosis induction is one of the mechanisms proposed
for the anticancer therapeutic effects of propolis [22, 23].
Apoptosis is a well-characterized type of programmed cell
death (PCD) and is considered as a highly regulated process
that allows a cell to self-degrade in order to eliminate an
unwanted or dysfunctional cell [24]. Conventional anticancer
treatments, such as chemotherapy and radiotherapy, kill
tumor cells primarily by the induction of apoptosis or
apoptosis-like PCD [24, 25]. In this study we demonstrate by
flow cytometry that red propolismight be an important apop-
tosis inductor in bladder cancer cells, showing an increase
in both early and late apoptosis stages in vitro. More than
that, the mechanism of apoptosis induced by BRP seems to
be dependent on the concentration of the propolis extract.

A single family of proteases, the caspases, has long been
considered as the pivotal executioner of all programmed
cell deaths [25]. When activated, the caspases cleave a
series of substrates, activate DNAses, and orchestrate cell
death [26]. However, there are evidences that apoptosis can
occur independently of caspases activity [27]. Apoptosis-
like PCD is a programmed cell death that shows a less
compact/complete chromatin condensation than in apoptosis
and most of the published forms of caspase-independent
apoptosis fall into this class of PCD [25]. More than that,
one of the main characteristics of PCD is the fragmentation
of nuclear DNA [27]. Apoptosis-inducing factor (AIF) is a
flavoprotein that resides in themitochondrial intermembrane
space [28]. Upon induction of apoptosis, AIF is translocated
from themitochondria to the nucleus and it causes chromatin
condensation and large-scale DNA fragmentation without
caspases activation [28–30]. Herein, ethanol extract of red
propolis does not induce significant caspases expression
activities. On the other hand, the AIF gene expression profile
in the 5637-cell line increased after BRP treatment and an
increase of DNA fragmentation was observed after 24 h of
BRP treatment. The apoptosis gene expression data from
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Figure 8: BRP ethanolic extract changes antioxidant enzymes gene expression in 5637 cells. The gene expression profile was determined by
qRT-PCR. (a) Mn-SOD; (b) TRx; (c) GST; (d) CAT; (e) Cu/Zn-SOD; (f) GLUT. Data are expressed as means ± SEM from three independent
experiments. Different letters (A, B, and C) indicate significant differences between the means and differences were considered significant at
𝑃 < 0.05.

our experiments confirmed the results of cytotoxicity and
apoptosis assays, showing that BRP extract may induce
apoptosis or apoptosis-like PCD in 5637 cells and that this
may occur by activation of different apoptosis pathways.

The positive effect of propolis anticancer therapy is seen
in its ability to initiate apoptosis in cancer cells through both
the intrinsic and extrinsic pathway [22, 31–35]. The intrinsic
apoptotic pathway is mediated by the mitochondria and is

mainly controlled by the balance and interactions between
pro- and antiapoptotic members of the Bcl-2 family pro-
teins, which regulate the permeability of the mitochondrial
membrane [26]. It has been proposed that the ratio between
Bcl-2 and Bax genes is more important in the regulation
of apoptosis than the level of each Bcl-2 family protein
alone [36] and the ratio of death and survival signals sensed
by the Bcl-2 family proteins determines whether the cell
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Figure 9: BRP ethanol extract decreased migration of 5637-cell line after 25 and 50 𝜇g/mL treatments. (a) Migration of 5637 cells after 24
hours of treatment with 25 and 50 𝜇g/mL of BRP ethanolic extract. (b) Percentage of free width in the scratch-wound healing after treatment
with 25 and 50 𝜇g/mL of BRP ethanolic extract in 0, 8, and 12 h. (c) Number of cells that cross the scratch-wound healing after treatment with
25 and 50 𝜇g/mL of BRP ethanolic extract in 8 and 12 h. Data are expressed as means ± SEM from three independent experiments. Different
letters (A and B) and asterisk (∗) indicate significant differences between the means and differences were considered significant at 𝑃 < 0.05.
#
𝑃 < 0.01.

will live or die [26, 37, 38]. Although both Bax and Bcl-
2 genes have shown an increase in expression profile after
treatment with BRP in this study, the Bax/Bcl-2 ratio in
the 5637-cell line strongly increased after 100 𝜇g/mL of BRP
treatment, suggesting that Bax and Bcl-2 may be involved in
the apoptotic events associated with the cytotoxic effects of

BRP.More than that, our study also showed an increase in p53
gene expression after treatment with BRP extract. It is well
known that p53 contributes to apoptosis induction mostly
by its transcription-dependent effects. However, it has been
shown that p53 can also induce cell death via direct activation
of Bcl-2, Bcl-XL, and Bax [39–41]. These data support our
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speculation that Brazilian red propolis may trigger apoptosis
or apoptosis-like PCD induction through p53, Bax, and Bcl-2
activation.

The established role of antioxidant enzymes against can-
cer is in the prevention of oxidativeDNAdamage and reactive
oxygen species (ROS) formation [42, 43]. It has been shown
that propolis has the ability to scavenge the free radicals in rats
[44]. Oxidative stress can trigger endoplasmic reticulum (ER)
stress [45] and ER stress is able to induce apoptosis without
involvement of caspases [46]. Moreover, the regulation of ER
membrane permeability by Bcl-2 proteins could be an impor-
tant molecular mechanism of ER stress-induced apoptosis
[30]. It has been shown that an ethanolic red propolis extract
induces MCF-7 cell apoptosis mediated by ER stress-related
signaling [13]. As shown here, BRP treatment increased the
mRNA levels of the antioxidant enzymes CAT, Cu/Zn-SOD,
TRx, GST, and Mn-SOD in a bladder cancer cell line. We
have shown previously that hydroalcoholic extract obtained
from red propolis presented high polyphenol content, impor-
tant DPPH scavenging ability, and SOD-like and CAT-like
activities [14]. Although further work needs to be carried out,
the increased levels of the antioxidant enzymes observed in
the present study might reflect the response of cells towards
programmed death mediated by ER stress-related signaling.

In conclusion, our findings indicate that Brazilian red
propolis induces cytotoxicity on superficial bladder cancer
cells in vitro and this effect may be due to a caspase-
independent apoptosis or apoptosis-like PCD. Additionally,
these results are insightful for the antitumor effect of BRP
and we speculate that red propolis may represent a source of
therapeutic agents for bladder cancer.
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